Dynamic elastic-plastic behaviour of whipping pipes: Experiments and theoretical model

S. R. Reid*, T. X. Yu, J. L. Yang, G. G. Corbett

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

This paper is concerned with the problem of pipe whip, the dynamic response of a high pressure piping system subjected to an end force as the result of a pipe break which releases a jet of fluid from the broken section. Both experimental and theoretical results are presented concerning the dynamic elastic-plastic behaviour of cantilever pipes subjected to a transverse force pulse at the free end. Comparisons between experimental data and theoretical predictions are made for mild-steel pipes with outer diameter-to-thickness ratios of 19.5, 28 and 32. It is demonstrated that, for these geometries, the whipping pipes display three characteristically different responses, viz. elastic, plastic hardening behaviour for thick pipes, elastic, plastic hardening-softening behaviour for moderately thick pipes and elastic, plastic hardening-softening-collapse behaviour for thinner pipes. The experimental data taken from a series of high-speed films are compared with the predictions of the instantaneous shapes of the whipping pipes derived from both a rigid, perfectly-plastic, large deflection, dynamic beam model and a more comprehensive model which incorporates the effects of elasticity and plastic hardening and softening, the details of which are presented in the paper.

Original languageEnglish
Pages (from-to)703-733
Number of pages31
JournalInternational Journal of Impact Engineering
Volume18
Issue number7-8
Publication statusPublished - 1 Oct 1996

Keywords

  • Dynamic structural plasticity
  • Large deflection analysis
  • Pipe whip

Fingerprint

Dive into the research topics of 'Dynamic elastic-plastic behaviour of whipping pipes: Experiments and theoretical model'. Together they form a unique fingerprint.

Cite this