### Abstract

We examine situations, where representations of a finite-dimensional F-algebra A defined over a separable extension field K/F, have a unique minimal field of definition. Here the base field F is assumed to be a field of dimension ≼1. In particular, F could be a finite field or k(t) or k((t)), where k is algebraically closed. We show that a unique minimal field of definition exists if (a) K/F is an algebraic extension or (b) A is of finite representation type. Moreover, in these situations the minimal field of definition is a finite extension of F. This is not the case if A is of infinite representation type or F fails to be of dimension ≼1. As a consequence, we compute the essential dimension of the functor of representations of a finite group, generalizing a theorem of Karpenko, Pevtsova and the second author.

Original language | English |
---|---|

Pages (from-to) | 291-304 |

Number of pages | 14 |

Journal | Proceedings of the Edinburgh Mathematical Society |

Volume | 62 |

Issue number | 1 |

Early online date | 22 Nov 2018 |

DOIs | |

Publication status | Published - Feb 2019 |

### Keywords

- Modular representation
- field of definition
- finite representation type
- essential dimension
- 2010 Mathematics subject classification: Primary 16G10 16G60 20C05
- modular representation

## Fingerprint Dive into the research topics of 'Fields of Definition for Representations of Associative Algebras'. Together they form a unique fingerprint.

## Cite this

Benson, D., & Reichstein, Z. (2019). Fields of Definition for Representations of Associative Algebras.

*Proceedings of the Edinburgh Mathematical Society*,*62*(1), 291-304. https://doi.org/10.1017/S0013091518000391