Fluid–rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions

Elmar Albers, Wolfgang Bach, Frieder Klein, Catriona D. Menzies, Friedrich Lucassen, Damon A.H. Teagle

Research output: Contribution to journalArticle

Abstract

Few data exist that provide insight into processes affecting the long-term carbon cycle at shallow forearc depths. To better understand the mobilization of C in sediments and crust of the subducting slab, we investigated carbonate materials that originate from the subduction channel at the Mariana forearc (< 20 km) and were recovered during International Ocean Discovery Program Expedition 366. Calcium carbonates occur as vein precipitates within metavolcanic and metasedimentary clasts. The clasts represent portions of the subducting lithosphere, including ocean island basalt, that were altered at lower blueschist facies conditions and were subsequently transported to the forearc seafloor by serpentinite mud volcanism. Euhedral aragonite and calcite and the lack of deformation within the veins suggest carbonate formation in a stress-free environment after peak metamorphism affected their hosts. Intergrowth with barite and marked negative Ce anomalies in carbonate attest the precipitation within a generally oxic environment, that is an environment not controlled by serpentinization. Strontium and O isotopic compositions in carbonate (87Sr=86Sr δ 0.7052 to 0.7054, δ18OVSMOW δ 20 to 24) imply precipitation from slab-derived fluids at temperatures between ∼ 130 and 300 °C. These temperature estimates are consistent with the presence of blueschist facies phases such as lawsonite coexisting with the carbonates in some veins. Incorporated C is inorganic (d13CVPDB D -1 to C4) and likely derived from the decarbonation of calcareous sediment and/or oceanic crust. These findings provide evidence for the mobilization of C in the downgoing slab at depths of < 20 km. Our study shows for the first time in detail that a portion of this C forms carbonate precipitates in the subduction channel of an active convergent margin. This process may be an important asset in understanding the deep carbon cycle since it highlights that some C is lost from the subducting lithosphere before reaching greater depths.

Original languageEnglish
Pages (from-to)907-930
Number of pages24
JournalSolid earth
Volume10
Issue number3
DOIs
Publication statusPublished - 24 Jun 2019

Fingerprint

Carbonates
redox conditions
carbonates
Carbon
carbonate
cycles
Calcium Carbonate
carbon
slabs
veins
carbon cycle
blueschist facies
slab
interactions
lithosphere
clast
mobilization
Precipitates
precipitates
crusts

ASJC Scopus subject areas

  • Soil Science
  • Geophysics
  • Geology
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Stratigraphy
  • Palaeontology

Cite this

Fluid–rock interactions in the shallow Mariana forearc : carbon cycling and redox conditions. / Albers, Elmar; Bach, Wolfgang; Klein, Frieder; Menzies, Catriona D.; Lucassen, Friedrich; Teagle, Damon A.H.

In: Solid earth, Vol. 10, No. 3, 24.06.2019, p. 907-930.

Research output: Contribution to journalArticle

Albers, Elmar ; Bach, Wolfgang ; Klein, Frieder ; Menzies, Catriona D. ; Lucassen, Friedrich ; Teagle, Damon A.H. / Fluid–rock interactions in the shallow Mariana forearc : carbon cycling and redox conditions. In: Solid earth. 2019 ; Vol. 10, No. 3. pp. 907-930.
@article{f736f8bcd3de415d9ee09daaaea83568,
title = "Fluid–rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions",
abstract = "Few data exist that provide insight into processes affecting the long-term carbon cycle at shallow forearc depths. To better understand the mobilization of C in sediments and crust of the subducting slab, we investigated carbonate materials that originate from the subduction channel at the Mariana forearc (< 20 km) and were recovered during International Ocean Discovery Program Expedition 366. Calcium carbonates occur as vein precipitates within metavolcanic and metasedimentary clasts. The clasts represent portions of the subducting lithosphere, including ocean island basalt, that were altered at lower blueschist facies conditions and were subsequently transported to the forearc seafloor by serpentinite mud volcanism. Euhedral aragonite and calcite and the lack of deformation within the veins suggest carbonate formation in a stress-free environment after peak metamorphism affected their hosts. Intergrowth with barite and marked negative Ce anomalies in carbonate attest the precipitation within a generally oxic environment, that is an environment not controlled by serpentinization. Strontium and O isotopic compositions in carbonate (87Sr=86Sr δ 0.7052 to 0.7054, δ18OVSMOW δ 20 to 24) imply precipitation from slab-derived fluids at temperatures between ∼ 130 and 300 °C. These temperature estimates are consistent with the presence of blueschist facies phases such as lawsonite coexisting with the carbonates in some veins. Incorporated C is inorganic (d13CVPDB D -1 to C4) and likely derived from the decarbonation of calcareous sediment and/or oceanic crust. These findings provide evidence for the mobilization of C in the downgoing slab at depths of < 20 km. Our study shows for the first time in detail that a portion of this C forms carbonate precipitates in the subduction channel of an active convergent margin. This process may be an important asset in understanding the deep carbon cycle since it highlights that some C is lost from the subducting lithosphere before reaching greater depths.",
author = "Elmar Albers and Wolfgang Bach and Frieder Klein and Menzies, {Catriona D.} and Friedrich Lucassen and Teagle, {Damon A.H.}",
note = "Funding was provided by the Deutsche Forschungsgemeinschaft (grant no. BA1605/18-1) and the Natural Environment Research Council (grant no. NE/P020909/1). Elmar Albers received financial support from the BremenIDEA out-program and from GLOMAR – Bremen International Graduate School for Marine Sciences.",
year = "2019",
month = "6",
day = "24",
doi = "10.5194/se-10-907-2019",
language = "English",
volume = "10",
pages = "907--930",
journal = "Solid earth",
issn = "1869-9510",
publisher = "Copernicus Gesellschaft mbH",
number = "3",

}

TY - JOUR

T1 - Fluid–rock interactions in the shallow Mariana forearc

T2 - carbon cycling and redox conditions

AU - Albers, Elmar

AU - Bach, Wolfgang

AU - Klein, Frieder

AU - Menzies, Catriona D.

AU - Lucassen, Friedrich

AU - Teagle, Damon A.H.

N1 - Funding was provided by the Deutsche Forschungsgemeinschaft (grant no. BA1605/18-1) and the Natural Environment Research Council (grant no. NE/P020909/1). Elmar Albers received financial support from the BremenIDEA out-program and from GLOMAR – Bremen International Graduate School for Marine Sciences.

PY - 2019/6/24

Y1 - 2019/6/24

N2 - Few data exist that provide insight into processes affecting the long-term carbon cycle at shallow forearc depths. To better understand the mobilization of C in sediments and crust of the subducting slab, we investigated carbonate materials that originate from the subduction channel at the Mariana forearc (< 20 km) and were recovered during International Ocean Discovery Program Expedition 366. Calcium carbonates occur as vein precipitates within metavolcanic and metasedimentary clasts. The clasts represent portions of the subducting lithosphere, including ocean island basalt, that were altered at lower blueschist facies conditions and were subsequently transported to the forearc seafloor by serpentinite mud volcanism. Euhedral aragonite and calcite and the lack of deformation within the veins suggest carbonate formation in a stress-free environment after peak metamorphism affected their hosts. Intergrowth with barite and marked negative Ce anomalies in carbonate attest the precipitation within a generally oxic environment, that is an environment not controlled by serpentinization. Strontium and O isotopic compositions in carbonate (87Sr=86Sr δ 0.7052 to 0.7054, δ18OVSMOW δ 20 to 24) imply precipitation from slab-derived fluids at temperatures between ∼ 130 and 300 °C. These temperature estimates are consistent with the presence of blueschist facies phases such as lawsonite coexisting with the carbonates in some veins. Incorporated C is inorganic (d13CVPDB D -1 to C4) and likely derived from the decarbonation of calcareous sediment and/or oceanic crust. These findings provide evidence for the mobilization of C in the downgoing slab at depths of < 20 km. Our study shows for the first time in detail that a portion of this C forms carbonate precipitates in the subduction channel of an active convergent margin. This process may be an important asset in understanding the deep carbon cycle since it highlights that some C is lost from the subducting lithosphere before reaching greater depths.

AB - Few data exist that provide insight into processes affecting the long-term carbon cycle at shallow forearc depths. To better understand the mobilization of C in sediments and crust of the subducting slab, we investigated carbonate materials that originate from the subduction channel at the Mariana forearc (< 20 km) and were recovered during International Ocean Discovery Program Expedition 366. Calcium carbonates occur as vein precipitates within metavolcanic and metasedimentary clasts. The clasts represent portions of the subducting lithosphere, including ocean island basalt, that were altered at lower blueschist facies conditions and were subsequently transported to the forearc seafloor by serpentinite mud volcanism. Euhedral aragonite and calcite and the lack of deformation within the veins suggest carbonate formation in a stress-free environment after peak metamorphism affected their hosts. Intergrowth with barite and marked negative Ce anomalies in carbonate attest the precipitation within a generally oxic environment, that is an environment not controlled by serpentinization. Strontium and O isotopic compositions in carbonate (87Sr=86Sr δ 0.7052 to 0.7054, δ18OVSMOW δ 20 to 24) imply precipitation from slab-derived fluids at temperatures between ∼ 130 and 300 °C. These temperature estimates are consistent with the presence of blueschist facies phases such as lawsonite coexisting with the carbonates in some veins. Incorporated C is inorganic (d13CVPDB D -1 to C4) and likely derived from the decarbonation of calcareous sediment and/or oceanic crust. These findings provide evidence for the mobilization of C in the downgoing slab at depths of < 20 km. Our study shows for the first time in detail that a portion of this C forms carbonate precipitates in the subduction channel of an active convergent margin. This process may be an important asset in understanding the deep carbon cycle since it highlights that some C is lost from the subducting lithosphere before reaching greater depths.

UR - http://www.scopus.com/inward/record.url?scp=85067836304&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/fluidrock-interactions-shallow-mariana-forearc-carbon-cycling-redox-conditions

U2 - 10.5194/se-10-907-2019

DO - 10.5194/se-10-907-2019

M3 - Article

VL - 10

SP - 907

EP - 930

JO - Solid earth

JF - Solid earth

SN - 1869-9510

IS - 3

ER -