Global importance of large‐diameter trees

James A. Lutz, Tucker J. Furniss, Daniel J. Johnson, Stuart J, Davies, David Allen, Alfonso Alonso, Kristina J. Anderson-Teixeira, Ana Andrade, Jennifer Baltzer, Kendall M. L. Becker, Erika M. Blomdahl, Norman A. Bourg, Sarayudh Bunyavejchewin, David F. R. P. Burslem, C. Alina Cansler, Ke Cao, Min Cao, Dairon Cardenas, Li-Wan Chang, Kuo-Jung Chao & 78 others Wei-Chun Chao, Jyh-Min Chiang, Chengjin Chu, George B. Chuyong, Keith Clay, Richard Condit, Susan Cordell, Handanakere S. Dattaraja, Alvaro Duque, Corneille E. N. Ewango, Gunter A. Fischer, Christine Fletcher, James A. Freund, Christian Giardina, Sara J. Germain, Gregory S. Gilbert, Zhanqing Hao, Terese Hart, Billy C. H. Hau, Fangliang He, Andrew Hector, Robert W. Howe, Chang-Fu Hsieh, Yue-Hua Hu, Stephen P. Hubbell, Faith M. Inman-Narahari, Akira Itoh, David Janik, Abdul Rahman Kassim, David Kenfack, Lisa Korte, Kamil Kral, Andrew J. Larson, YiDe Li, Yiching Lin, Shirong Liu, Shawn Lum, Keping Ma, Jean-Remy Makana, Yadvinder Malhi, Sean M. McMahon, William J. McShea, Herve R. Memiaghe, Xiangcheng Mi, Michael Morecroft, Paul M. Musili, Jonathan A. Myers, Vojtech Novotny, Alexandre de Oliveira, Perry Ong, David A. Orwig, Rebecca Ostertag, Geoffrey G. Parker, Rajit Patankar, Richard P. Phillips, Glen Reynolds, Lawren Sack, Guo-Zhang M. Song, Sheng-Hsin Su, Raman Sukumar, I-Fang Sun, Hebbalalu S. Suresh, Mark E. Swanson, Sylvester Tan, Duncan W. Thomas, Jill Thompson, Maria Uriarte, Renato Valencia, Alberto Vicentini, Tomas Vrska, Xugao Wang, George D. Weiblen, Amy Wolf, Shu-Hui Wu, Han Xu, Takuo Yamakura, Sandra Yap, Jess K. Zimmerman

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes.LocationGlobal.Time periodEarly 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass. Results Averaged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17, p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46, p < .001), as did forest density (r2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26, p < .001). Main conclusions Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
Original languageEnglish
Pages (from-to)849-864
Number of pages16
JournalGlobal Ecology and Biogeography
Volume27
Issue number7
Early online date8 May 2018
DOIs
Publication statusPublished - 24 Jul 2018

Fingerprint

biomass
tree and stand measurements
stand structure
twenty first century
biome
ecosystem service
ecosystem services
environmental change
species richness
stem
species diversity
stems
ecosystems
carbon

Keywords

  • forest biomass
  • forest structure
  • large-diameter trees
  • latitudinal gradient
  • resource inequality
  • Smithsonian ForestGEO

Cite this

Lutz, J. A., Furniss, T. J., Johnson, D. J., Davies, S. J., Allen, D., Alonso, A., ... Zimmerman, J. K. (2018). Global importance of large‐diameter trees. Global Ecology and Biogeography, 27(7), 849-864. https://doi.org/10.1111/geb.12747

Global importance of large‐diameter trees. / Lutz, James A.; Furniss, Tucker J.; Johnson, Daniel J.; Davies, Stuart J,; Allen, David; Alonso, Alfonso; Anderson-Teixeira, Kristina J.; Andrade, Ana; Baltzer, Jennifer; Becker, Kendall M. L.; Blomdahl, Erika M.; Bourg, Norman A.; Bunyavejchewin, Sarayudh; Burslem, David F. R. P.; Cansler, C. Alina; Cao, Ke; Cao, Min; Cardenas, Dairon; Chang, Li-Wan; Chao, Kuo-Jung; Chao, Wei-Chun; Chiang, Jyh-Min; Chu, Chengjin; Chuyong, George B.; Clay, Keith; Condit, Richard; Cordell, Susan; Dattaraja, Handanakere S.; Duque, Alvaro; Ewango, Corneille E. N.; Fischer, Gunter A.; Fletcher, Christine; Freund, James A.; Giardina, Christian; Germain, Sara J.; Gilbert, Gregory S.; Hao, Zhanqing; Hart, Terese ; Hau, Billy C. H.; He, Fangliang; Hector, Andrew; Howe, Robert W.; Hsieh, Chang-Fu; Hu, Yue-Hua; Hubbell, Stephen P.; Inman-Narahari, Faith M.; Itoh, Akira; Janik, David; Kassim, Abdul Rahman; Kenfack, David; Korte, Lisa; Kral, Kamil; Larson, Andrew J.; Li, YiDe; Lin, Yiching; Liu, Shirong; Lum, Shawn; Ma, Keping; Makana, Jean-Remy ; Malhi, Yadvinder ; McMahon, Sean M.; McShea, William J.; Memiaghe, Herve R.; Mi, Xiangcheng; Morecroft, Michael; Musili, Paul M.; Myers, Jonathan A.; Novotny, Vojtech; de Oliveira, Alexandre; Ong, Perry; Orwig, David A.; Ostertag, Rebecca; Parker, Geoffrey G.; Patankar, Rajit; Phillips, Richard P.; Reynolds, Glen; Sack, Lawren; Song, Guo-Zhang M.; Su, Sheng-Hsin; Sukumar, Raman; Sun, I-Fang; Suresh, Hebbalalu S.; Swanson, Mark E.; Tan, Sylvester; Thomas, Duncan W.; Thompson, Jill; Uriarte, Maria; Valencia, Renato; Vicentini, Alberto; Vrska, Tomas; Wang, Xugao; Weiblen, George D.; Wolf, Amy; Wu, Shu-Hui; Xu, Han; Yamakura, Takuo; Yap, Sandra; Zimmerman, Jess K.

In: Global Ecology and Biogeography, Vol. 27, No. 7, 24.07.2018, p. 849-864.

Research output: Contribution to journalArticle

Lutz, JA, Furniss, TJ, Johnson, DJ, Davies, SJ, Allen, D, Alonso, A, Anderson-Teixeira, KJ, Andrade, A, Baltzer, J, Becker, KML, Blomdahl, EM, Bourg, NA, Bunyavejchewin, S, Burslem, DFRP, Cansler, CA, Cao, K, Cao, M, Cardenas, D, Chang, L-W, Chao, K-J, Chao, W-C, Chiang, J-M, Chu, C, Chuyong, GB, Clay, K, Condit, R, Cordell, S, Dattaraja, HS, Duque, A, Ewango, CEN, Fischer, GA, Fletcher, C, Freund, JA, Giardina, C, Germain, SJ, Gilbert, GS, Hao, Z, Hart, T, Hau, BCH, He, F, Hector, A, Howe, RW, Hsieh, C-F, Hu, Y-H, Hubbell, SP, Inman-Narahari, FM, Itoh, A, Janik, D, Kassim, AR, Kenfack, D, Korte, L, Kral, K, Larson, AJ, Li, Y, Lin, Y, Liu, S, Lum, S, Ma, K, Makana, J-R, Malhi, Y, McMahon, SM, McShea, WJ, Memiaghe, HR, Mi, X, Morecroft, M, Musili, PM, Myers, JA, Novotny, V, de Oliveira, A, Ong, P, Orwig, DA, Ostertag, R, Parker, GG, Patankar, R, Phillips, RP, Reynolds, G, Sack, L, Song, G-ZM, Su, S-H, Sukumar, R, Sun, I-F, Suresh, HS, Swanson, ME, Tan, S, Thomas, DW, Thompson, J, Uriarte, M, Valencia, R, Vicentini, A, Vrska, T, Wang, X, Weiblen, GD, Wolf, A, Wu, S-H, Xu, H, Yamakura, T, Yap, S & Zimmerman, JK 2018, 'Global importance of large‐diameter trees', Global Ecology and Biogeography, vol. 27, no. 7, pp. 849-864. https://doi.org/10.1111/geb.12747
Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A et al. Global importance of large‐diameter trees. Global Ecology and Biogeography. 2018 Jul 24;27(7):849-864. https://doi.org/10.1111/geb.12747
Lutz, James A. ; Furniss, Tucker J. ; Johnson, Daniel J. ; Davies, Stuart J, ; Allen, David ; Alonso, Alfonso ; Anderson-Teixeira, Kristina J. ; Andrade, Ana ; Baltzer, Jennifer ; Becker, Kendall M. L. ; Blomdahl, Erika M. ; Bourg, Norman A. ; Bunyavejchewin, Sarayudh ; Burslem, David F. R. P. ; Cansler, C. Alina ; Cao, Ke ; Cao, Min ; Cardenas, Dairon ; Chang, Li-Wan ; Chao, Kuo-Jung ; Chao, Wei-Chun ; Chiang, Jyh-Min ; Chu, Chengjin ; Chuyong, George B. ; Clay, Keith ; Condit, Richard ; Cordell, Susan ; Dattaraja, Handanakere S. ; Duque, Alvaro ; Ewango, Corneille E. N. ; Fischer, Gunter A. ; Fletcher, Christine ; Freund, James A. ; Giardina, Christian ; Germain, Sara J. ; Gilbert, Gregory S. ; Hao, Zhanqing ; Hart, Terese ; Hau, Billy C. H. ; He, Fangliang ; Hector, Andrew ; Howe, Robert W. ; Hsieh, Chang-Fu ; Hu, Yue-Hua ; Hubbell, Stephen P. ; Inman-Narahari, Faith M. ; Itoh, Akira ; Janik, David ; Kassim, Abdul Rahman ; Kenfack, David ; Korte, Lisa ; Kral, Kamil ; Larson, Andrew J. ; Li, YiDe ; Lin, Yiching ; Liu, Shirong ; Lum, Shawn ; Ma, Keping ; Makana, Jean-Remy ; Malhi, Yadvinder ; McMahon, Sean M. ; McShea, William J. ; Memiaghe, Herve R. ; Mi, Xiangcheng ; Morecroft, Michael ; Musili, Paul M. ; Myers, Jonathan A. ; Novotny, Vojtech ; de Oliveira, Alexandre ; Ong, Perry ; Orwig, David A. ; Ostertag, Rebecca ; Parker, Geoffrey G. ; Patankar, Rajit ; Phillips, Richard P. ; Reynolds, Glen ; Sack, Lawren ; Song, Guo-Zhang M. ; Su, Sheng-Hsin ; Sukumar, Raman ; Sun, I-Fang ; Suresh, Hebbalalu S. ; Swanson, Mark E. ; Tan, Sylvester ; Thomas, Duncan W. ; Thompson, Jill ; Uriarte, Maria ; Valencia, Renato ; Vicentini, Alberto ; Vrska, Tomas ; Wang, Xugao ; Weiblen, George D. ; Wolf, Amy ; Wu, Shu-Hui ; Xu, Han ; Yamakura, Takuo ; Yap, Sandra ; Zimmerman, Jess K. / Global importance of large‐diameter trees. In: Global Ecology and Biogeography. 2018 ; Vol. 27, No. 7. pp. 849-864.
@article{7f63f979641d46aa8c4d10a409e98e85,
title = "Global importance of large‐diameter trees",
abstract = "Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes.LocationGlobal.Time periodEarly 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1{\%} of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50{\%} of forest biomass. Results Averaged across these 48 forest plots, the largest 1{\%} of trees ≥ 1 cm DBH comprised 50{\%} of aboveground live biomass, with hectare‐scale standard deviation of 26{\%}. Trees ≥ 60 cm DBH comprised 41{\%} of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17, p = .002). The concentration of biomass in the largest 1{\%} of trees declined with increasing absolute latitude (r2 = .46, p < .001), as did forest density (r2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26, p < .001). Main conclusions Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.",
keywords = "forest biomass, forest structure, large-diameter trees, latitudinal gradient, resource inequality, Smithsonian ForestGEO",
author = "Lutz, {James A.} and Furniss, {Tucker J.} and Johnson, {Daniel J.} and Davies, {Stuart J,} and David Allen and Alfonso Alonso and Anderson-Teixeira, {Kristina J.} and Ana Andrade and Jennifer Baltzer and Becker, {Kendall M. L.} and Blomdahl, {Erika M.} and Bourg, {Norman A.} and Sarayudh Bunyavejchewin and Burslem, {David F. R. P.} and Cansler, {C. Alina} and Ke Cao and Min Cao and Dairon Cardenas and Li-Wan Chang and Kuo-Jung Chao and Wei-Chun Chao and Jyh-Min Chiang and Chengjin Chu and Chuyong, {George B.} and Keith Clay and Richard Condit and Susan Cordell and Dattaraja, {Handanakere S.} and Alvaro Duque and Ewango, {Corneille E. N.} and Fischer, {Gunter A.} and Christine Fletcher and Freund, {James A.} and Christian Giardina and Germain, {Sara J.} and Gilbert, {Gregory S.} and Zhanqing Hao and Terese Hart and Hau, {Billy C. H.} and Fangliang He and Andrew Hector and Howe, {Robert W.} and Chang-Fu Hsieh and Yue-Hua Hu and Hubbell, {Stephen P.} and Inman-Narahari, {Faith M.} and Akira Itoh and David Janik and Kassim, {Abdul Rahman} and David Kenfack and Lisa Korte and Kamil Kral and Larson, {Andrew J.} and YiDe Li and Yiching Lin and Shirong Liu and Shawn Lum and Keping Ma and Jean-Remy Makana and Yadvinder Malhi and McMahon, {Sean M.} and McShea, {William J.} and Memiaghe, {Herve R.} and Xiangcheng Mi and Michael Morecroft and Musili, {Paul M.} and Myers, {Jonathan A.} and Vojtech Novotny and {de Oliveira}, Alexandre and Perry Ong and Orwig, {David A.} and Rebecca Ostertag and Parker, {Geoffrey G.} and Rajit Patankar and Phillips, {Richard P.} and Glen Reynolds and Lawren Sack and Song, {Guo-Zhang M.} and Sheng-Hsin Su and Raman Sukumar and I-Fang Sun and Suresh, {Hebbalalu S.} and Swanson, {Mark E.} and Sylvester Tan and Thomas, {Duncan W.} and Jill Thompson and Maria Uriarte and Renato Valencia and Alberto Vicentini and Tomas Vrska and Xugao Wang and Weiblen, {George D.} and Amy Wolf and Shu-Hui Wu and Han Xu and Takuo Yamakura and Sandra Yap and Zimmerman, {Jess K.}",
note = "Funding for workshops during which these ideas were developed was provided by NSF grants 1545761 and 1354741 to SD Davies.This research was supported by the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 8998. Acknowledgements for the global support of the thou-sands of people needed to establish and maintain these 48 plots can be found in Supporting Information Appendix S4. References to locations refer to geographical features and not to the boundaries of any country or territory.",
year = "2018",
month = "7",
day = "24",
doi = "10.1111/geb.12747",
language = "English",
volume = "27",
pages = "849--864",
journal = "Global Ecology and Biogeography",
issn = "1466-822X",
publisher = "Wiley-Blackwell",
number = "7",

}

TY - JOUR

T1 - Global importance of large‐diameter trees

AU - Lutz, James A.

AU - Furniss, Tucker J.

AU - Johnson, Daniel J.

AU - Davies, Stuart J,

AU - Allen, David

AU - Alonso, Alfonso

AU - Anderson-Teixeira, Kristina J.

AU - Andrade, Ana

AU - Baltzer, Jennifer

AU - Becker, Kendall M. L.

AU - Blomdahl, Erika M.

AU - Bourg, Norman A.

AU - Bunyavejchewin, Sarayudh

AU - Burslem, David F. R. P.

AU - Cansler, C. Alina

AU - Cao, Ke

AU - Cao, Min

AU - Cardenas, Dairon

AU - Chang, Li-Wan

AU - Chao, Kuo-Jung

AU - Chao, Wei-Chun

AU - Chiang, Jyh-Min

AU - Chu, Chengjin

AU - Chuyong, George B.

AU - Clay, Keith

AU - Condit, Richard

AU - Cordell, Susan

AU - Dattaraja, Handanakere S.

AU - Duque, Alvaro

AU - Ewango, Corneille E. N.

AU - Fischer, Gunter A.

AU - Fletcher, Christine

AU - Freund, James A.

AU - Giardina, Christian

AU - Germain, Sara J.

AU - Gilbert, Gregory S.

AU - Hao, Zhanqing

AU - Hart, Terese

AU - Hau, Billy C. H.

AU - He, Fangliang

AU - Hector, Andrew

AU - Howe, Robert W.

AU - Hsieh, Chang-Fu

AU - Hu, Yue-Hua

AU - Hubbell, Stephen P.

AU - Inman-Narahari, Faith M.

AU - Itoh, Akira

AU - Janik, David

AU - Kassim, Abdul Rahman

AU - Kenfack, David

AU - Korte, Lisa

AU - Kral, Kamil

AU - Larson, Andrew J.

AU - Li, YiDe

AU - Lin, Yiching

AU - Liu, Shirong

AU - Lum, Shawn

AU - Ma, Keping

AU - Makana, Jean-Remy

AU - Malhi, Yadvinder

AU - McMahon, Sean M.

AU - McShea, William J.

AU - Memiaghe, Herve R.

AU - Mi, Xiangcheng

AU - Morecroft, Michael

AU - Musili, Paul M.

AU - Myers, Jonathan A.

AU - Novotny, Vojtech

AU - de Oliveira, Alexandre

AU - Ong, Perry

AU - Orwig, David A.

AU - Ostertag, Rebecca

AU - Parker, Geoffrey G.

AU - Patankar, Rajit

AU - Phillips, Richard P.

AU - Reynolds, Glen

AU - Sack, Lawren

AU - Song, Guo-Zhang M.

AU - Su, Sheng-Hsin

AU - Sukumar, Raman

AU - Sun, I-Fang

AU - Suresh, Hebbalalu S.

AU - Swanson, Mark E.

AU - Tan, Sylvester

AU - Thomas, Duncan W.

AU - Thompson, Jill

AU - Uriarte, Maria

AU - Valencia, Renato

AU - Vicentini, Alberto

AU - Vrska, Tomas

AU - Wang, Xugao

AU - Weiblen, George D.

AU - Wolf, Amy

AU - Wu, Shu-Hui

AU - Xu, Han

AU - Yamakura, Takuo

AU - Yap, Sandra

AU - Zimmerman, Jess K.

N1 - Funding for workshops during which these ideas were developed was provided by NSF grants 1545761 and 1354741 to SD Davies.This research was supported by the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 8998. Acknowledgements for the global support of the thou-sands of people needed to establish and maintain these 48 plots can be found in Supporting Information Appendix S4. References to locations refer to geographical features and not to the boundaries of any country or territory.

PY - 2018/7/24

Y1 - 2018/7/24

N2 - Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes.LocationGlobal.Time periodEarly 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass. Results Averaged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17, p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46, p < .001), as did forest density (r2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26, p < .001). Main conclusions Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.

AB - Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes.LocationGlobal.Time periodEarly 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass. Results Averaged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17, p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46, p < .001), as did forest density (r2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26, p < .001). Main conclusions Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.

KW - forest biomass

KW - forest structure

KW - large-diameter trees

KW - latitudinal gradient

KW - resource inequality

KW - Smithsonian ForestGEO

U2 - 10.1111/geb.12747

DO - 10.1111/geb.12747

M3 - Article

VL - 27

SP - 849

EP - 864

JO - Global Ecology and Biogeography

JF - Global Ecology and Biogeography

SN - 1466-822X

IS - 7

ER -