High-density carbon ablator experiments on the National Ignition Facility

A. J. MacKinnon*, N. B. Meezan, J. S. Ross, S. Le Pape, L. Berzak Hopkins, L. Divol, D. Ho, J. Milovich, A. Pak, J. Ralph, T. Doeppner, P. K. Patel, C. Thomas, R. Tommasini, S. Haan, A. G. MacPhee, J. McNaney, J. Caggiano, R. Hatarik, R. Bionta & 50 others T. Ma, B. Spears, J. R. Rygg, L. R. Benedetti, R. P. J. Town, D. K. Bradley, E. L. Dewald, D. Fittinghoff, O. S. Jones, H. R. Robey, J. D. Moody, S. Khan, D. A. Callahan, A. Hamza, J. Biener, P. M. Celliers, D. G. Braun, D. J. Erskine, S. T. Prisbrey, R. J. Wallace, B. Kozioziemski, R. Dylla-Spears, J. Sater, G. Collins, E. Storm, W. Hsing, O. Landen, J. L. Atherton, J. D. Lindl, M. J. Edwards, J. A. Frenje, M. Gatu-Johnson, C. K. Li, R. Petrasso, H. Rinderknecht, M. Rosenberg, F. H. Seguin, A. Zylstra, J. P. Knauer, G. Grim, N. Guler, F. Merrill, R. Olson, G. A. Kyrala, J. D. Kilkenny, A. Nikroo, K. Moreno, D. E. Hoover, C. Wild, E. Werner

*Corresponding author for this work

Research output: Contribution to journalArticle

81 Citations (Scopus)

Abstract

High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2x higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 +/- 20 km/s with no observed ablator mixing into the hot spot. (C) 2014 AIP Publishing LLC.

Original languageEnglish
Article number056318
Number of pages11
JournalPhysics of Plasmas
Volume21
Issue number5
DOIs
Publication statusPublished - May 2014

Keywords

  • indirect-drive targets
  • laser

Cite this

MacKinnon, A. J., Meezan, N. B., Ross, J. S., Le Pape, S., Hopkins, L. B., Divol, L., ... Werner, E. (2014). High-density carbon ablator experiments on the National Ignition Facility. Physics of Plasmas, 21(5), [056318]. https://doi.org/10.1063/1.4876611

High-density carbon ablator experiments on the National Ignition Facility. / MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.; Le Pape, S.; Hopkins, L. Berzak; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Doeppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R.; Ma, T.; Spears, B.; Rygg, J. R.; Benedetti, L. R.; Town, R. P. J.; Bradley, D. K.; Dewald, E. L.; Fittinghoff, D.; Jones, O. S.; Robey, H. R.; Moody, J. D.; Khan, S.; Callahan, D. A.; Hamza, A.; Biener, J.; Celliers, P. M.; Braun, D. G.; Erskine, D. J.; Prisbrey, S. T.; Wallace, R. J.; Kozioziemski, B.; Dylla-Spears, R.; Sater, J.; Collins, G.; Storm, E.; Hsing, W.; Landen, O.; Atherton, J. L.; Lindl, J. D.; Edwards, M. J.; Frenje, J. A.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Rinderknecht, H.; Rosenberg, M.; Seguin, F. H.; Zylstra, A.; Knauer, J. P.; Grim, G.; Guler, N.; Merrill, F.; Olson, R.; Kyrala, G. A.; Kilkenny, J. D.; Nikroo, A.; Moreno, K.; Hoover, D. E.; Wild, C.; Werner, E.

In: Physics of Plasmas, Vol. 21, No. 5, 056318, 05.2014.

Research output: Contribution to journalArticle

MacKinnon, AJ, Meezan, NB, Ross, JS, Le Pape, S, Hopkins, LB, Divol, L, Ho, D, Milovich, J, Pak, A, Ralph, J, Doeppner, T, Patel, PK, Thomas, C, Tommasini, R, Haan, S, MacPhee, AG, McNaney, J, Caggiano, J, Hatarik, R, Bionta, R, Ma, T, Spears, B, Rygg, JR, Benedetti, LR, Town, RPJ, Bradley, DK, Dewald, EL, Fittinghoff, D, Jones, OS, Robey, HR, Moody, JD, Khan, S, Callahan, DA, Hamza, A, Biener, J, Celliers, PM, Braun, DG, Erskine, DJ, Prisbrey, ST, Wallace, RJ, Kozioziemski, B, Dylla-Spears, R, Sater, J, Collins, G, Storm, E, Hsing, W, Landen, O, Atherton, JL, Lindl, JD, Edwards, MJ, Frenje, JA, Gatu-Johnson, M, Li, CK, Petrasso, R, Rinderknecht, H, Rosenberg, M, Seguin, FH, Zylstra, A, Knauer, JP, Grim, G, Guler, N, Merrill, F, Olson, R, Kyrala, GA, Kilkenny, JD, Nikroo, A, Moreno, K, Hoover, DE, Wild, C & Werner, E 2014, 'High-density carbon ablator experiments on the National Ignition Facility', Physics of Plasmas, vol. 21, no. 5, 056318. https://doi.org/10.1063/1.4876611
MacKinnon AJ, Meezan NB, Ross JS, Le Pape S, Hopkins LB, Divol L et al. High-density carbon ablator experiments on the National Ignition Facility. Physics of Plasmas. 2014 May;21(5). 056318. https://doi.org/10.1063/1.4876611
MacKinnon, A. J. ; Meezan, N. B. ; Ross, J. S. ; Le Pape, S. ; Hopkins, L. Berzak ; Divol, L. ; Ho, D. ; Milovich, J. ; Pak, A. ; Ralph, J. ; Doeppner, T. ; Patel, P. K. ; Thomas, C. ; Tommasini, R. ; Haan, S. ; MacPhee, A. G. ; McNaney, J. ; Caggiano, J. ; Hatarik, R. ; Bionta, R. ; Ma, T. ; Spears, B. ; Rygg, J. R. ; Benedetti, L. R. ; Town, R. P. J. ; Bradley, D. K. ; Dewald, E. L. ; Fittinghoff, D. ; Jones, O. S. ; Robey, H. R. ; Moody, J. D. ; Khan, S. ; Callahan, D. A. ; Hamza, A. ; Biener, J. ; Celliers, P. M. ; Braun, D. G. ; Erskine, D. J. ; Prisbrey, S. T. ; Wallace, R. J. ; Kozioziemski, B. ; Dylla-Spears, R. ; Sater, J. ; Collins, G. ; Storm, E. ; Hsing, W. ; Landen, O. ; Atherton, J. L. ; Lindl, J. D. ; Edwards, M. J. ; Frenje, J. A. ; Gatu-Johnson, M. ; Li, C. K. ; Petrasso, R. ; Rinderknecht, H. ; Rosenberg, M. ; Seguin, F. H. ; Zylstra, A. ; Knauer, J. P. ; Grim, G. ; Guler, N. ; Merrill, F. ; Olson, R. ; Kyrala, G. A. ; Kilkenny, J. D. ; Nikroo, A. ; Moreno, K. ; Hoover, D. E. ; Wild, C. ; Werner, E. / High-density carbon ablator experiments on the National Ignition Facility. In: Physics of Plasmas. 2014 ; Vol. 21, No. 5.
@article{a482d820f1804955943827f6df507c68,
title = "High-density carbon ablator experiments on the National Ignition Facility",
abstract = "High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2x higher than equivalent CH implosions, representing better than 50{\%} Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98{\%} laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 +/- 20 km/s with no observed ablator mixing into the hot spot. (C) 2014 AIP Publishing LLC.",
keywords = "indirect-drive targets, laser",
author = "MacKinnon, {A. J.} and Meezan, {N. B.} and Ross, {J. S.} and {Le Pape}, S. and Hopkins, {L. Berzak} and L. Divol and D. Ho and J. Milovich and A. Pak and J. Ralph and T. Doeppner and Patel, {P. K.} and C. Thomas and R. Tommasini and S. Haan and MacPhee, {A. G.} and J. McNaney and J. Caggiano and R. Hatarik and R. Bionta and T. Ma and B. Spears and Rygg, {J. R.} and Benedetti, {L. R.} and Town, {R. P. J.} and Bradley, {D. K.} and Dewald, {E. L.} and D. Fittinghoff and Jones, {O. S.} and Robey, {H. R.} and Moody, {J. D.} and S. Khan and Callahan, {D. A.} and A. Hamza and J. Biener and Celliers, {P. M.} and Braun, {D. G.} and Erskine, {D. J.} and Prisbrey, {S. T.} and Wallace, {R. J.} and B. Kozioziemski and R. Dylla-Spears and J. Sater and G. Collins and E. Storm and W. Hsing and O. Landen and Atherton, {J. L.} and Lindl, {J. D.} and Edwards, {M. J.} and Frenje, {J. A.} and M. Gatu-Johnson and Li, {C. K.} and R. Petrasso and H. Rinderknecht and M. Rosenberg and Seguin, {F. H.} and A. Zylstra and Knauer, {J. P.} and G. Grim and N. Guler and F. Merrill and R. Olson and Kyrala, {G. A.} and Kilkenny, {J. D.} and A. Nikroo and K. Moreno and Hoover, {D. E.} and C. Wild and E. Werner",
year = "2014",
month = "5",
doi = "10.1063/1.4876611",
language = "English",
volume = "21",
journal = "Physics of Plasmas",
issn = "1070-664X",
publisher = "AMER INST PHYSICS",
number = "5",

}

TY - JOUR

T1 - High-density carbon ablator experiments on the National Ignition Facility

AU - MacKinnon, A. J.

AU - Meezan, N. B.

AU - Ross, J. S.

AU - Le Pape, S.

AU - Hopkins, L. Berzak

AU - Divol, L.

AU - Ho, D.

AU - Milovich, J.

AU - Pak, A.

AU - Ralph, J.

AU - Doeppner, T.

AU - Patel, P. K.

AU - Thomas, C.

AU - Tommasini, R.

AU - Haan, S.

AU - MacPhee, A. G.

AU - McNaney, J.

AU - Caggiano, J.

AU - Hatarik, R.

AU - Bionta, R.

AU - Ma, T.

AU - Spears, B.

AU - Rygg, J. R.

AU - Benedetti, L. R.

AU - Town, R. P. J.

AU - Bradley, D. K.

AU - Dewald, E. L.

AU - Fittinghoff, D.

AU - Jones, O. S.

AU - Robey, H. R.

AU - Moody, J. D.

AU - Khan, S.

AU - Callahan, D. A.

AU - Hamza, A.

AU - Biener, J.

AU - Celliers, P. M.

AU - Braun, D. G.

AU - Erskine, D. J.

AU - Prisbrey, S. T.

AU - Wallace, R. J.

AU - Kozioziemski, B.

AU - Dylla-Spears, R.

AU - Sater, J.

AU - Collins, G.

AU - Storm, E.

AU - Hsing, W.

AU - Landen, O.

AU - Atherton, J. L.

AU - Lindl, J. D.

AU - Edwards, M. J.

AU - Frenje, J. A.

AU - Gatu-Johnson, M.

AU - Li, C. K.

AU - Petrasso, R.

AU - Rinderknecht, H.

AU - Rosenberg, M.

AU - Seguin, F. H.

AU - Zylstra, A.

AU - Knauer, J. P.

AU - Grim, G.

AU - Guler, N.

AU - Merrill, F.

AU - Olson, R.

AU - Kyrala, G. A.

AU - Kilkenny, J. D.

AU - Nikroo, A.

AU - Moreno, K.

AU - Hoover, D. E.

AU - Wild, C.

AU - Werner, E.

PY - 2014/5

Y1 - 2014/5

N2 - High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2x higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 +/- 20 km/s with no observed ablator mixing into the hot spot. (C) 2014 AIP Publishing LLC.

AB - High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2x higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 +/- 20 km/s with no observed ablator mixing into the hot spot. (C) 2014 AIP Publishing LLC.

KW - indirect-drive targets

KW - laser

U2 - 10.1063/1.4876611

DO - 10.1063/1.4876611

M3 - Article

VL - 21

JO - Physics of Plasmas

JF - Physics of Plasmas

SN - 1070-664X

IS - 5

M1 - 056318

ER -