Limits to compensatory adaptation and the persistence of antibiotic resistance in pathogenic bacteria

R. Craig MacLean*, Tom Vogwill

*Corresponding author for this work

Research output: Contribution to journalArticle

29 Citations (Scopus)
2 Downloads (Pure)

Abstract

Antibiotic resistance carries a fitness cost that could potentially limit the spread of resistance in bacterial pathogens. In spite of this cost, a large number of experimental evolution studies have found that resistance is stably maintained in the absence of antibiotics as a result of compensatory evolution. Clinical studies, on the other hand, have found that resistance in pathogen populations usually declines after antibiotic use is stopped, suggesting that compensatory adaptation is not effective in vivo. In this article, we argue that this disagreement arises because there are limits to compensatory adaptation in nature that are not captured by the design of current laboratory selection experiments. First, clinical treatment fails to eradicate antibiotic-sensitive strains, and competition between sensitive and resistant strains leads to the rapid loss of resistance following treatment. Second, laboratory studies overestimate the efficacy of compensatory adaptation in nature by failing to capture costs associated with compensatory mutations. Taken together, these ideas can potentially reconcile evolutionary theory with the clinical dynamics of antibiotic resistance and guide the development of strategies for containing resistance in clinical pathogens.

Original languageEnglish
Article numbereou032
Pages (from-to)4-12
Number of pages9
JournalEvolution, Medicine and Public Health
Volume2015
Issue number1
DOIs
Publication statusPublished - 21 Dec 2014

Keywords

  • Antibiotic resistance
  • Clinical microbiology
  • Compensatory adaptation
  • Experimental evolution
  • Fitness cost

Fingerprint Dive into the research topics of 'Limits to compensatory adaptation and the persistence of antibiotic resistance in pathogenic bacteria'. Together they form a unique fingerprint.

  • Cite this