Meiotic chromosome mobility in fission yeast is resistant to environmental stress

Doris Illner, Alexander Lorenz, Harry Scherthan

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
6 Downloads (Pure)


The formation of healthy gametes requires pairing of homologous chromosomes (homologs) as a prerequisite for their correct segregation during meiosis. Initially, homolog alignment is promoted by meiotic chromosome movements feeding into intimate homolog pairing by homologous recombination and/or synaptonemal complex formation. Meiotic chromosome movements in the fission yeast, Schizosaccharomyces pombe, depend on astral microtubule dynamics that drag the nucleus through the zygote; known as horsetail movement. The response of microtubule-led meiotic chromosome movements to environmental stresses such as ionizing irradiation (IR) and associated reactive oxygen species (ROS) is not known. Here, we show that, in contrast to budding yeast, the horsetail movement is largely radiation-resistant, which is likely mediated by a potent antioxidant defense. IR exposure of sporulating S. pombe cells induced misrepair and irreparable DNA double strand breaks causing chromosome fragmentation, missegregation and gamete death. Comparing radiation outcome in fission and budding yeast, and studying meiosis with poisoned microtubules indicates that the increased gamete death after IR is innate to fission yeast. Inhibition of meiotic chromosome mobility in the face of IR failed to influence the course of DSB repair, indicating that paralysis of meiotic chromosome mobility in a genotoxic environment is not a universal response among species.
Original languageEnglish
Article number24222
Pages (from-to)1-16
Number of pages16
JournalScientific Reports
Publication statusPublished - 14 Apr 2016


Dive into the research topics of 'Meiotic chromosome mobility in fission yeast is resistant to environmental stress'. Together they form a unique fingerprint.

Cite this