Meso-microscale coupling for wind resource assessment using averaged atmospheric stability conditions

Pablo Durán*, Cathérine Meissner, Kendall Rutledge, Ricardo Fonseca, Javier Martin-Torres, Muyiwa S. Adaramola

*Corresponding author for this work

Research output: Contribution to journalArticle

2 Citations (Scopus)
21 Downloads (Pure)

Abstract

A methodology to couple Numerical Weather Prediction (NWP) models with steady-state Computational Fluid Dynamic (CFD) models for wind resource assessment applications is proposed. NWP simulations are averaged according to their atmospheric stability and wind direction. The averaged NWP simulations are used to generate the initial and boundary conditions of the CFD model. The method is applied using one year of Weather Research and Forecasting (WRF) simulations at the Honkajoki wind farm in Finland and validated by Sonic Detection and Ranging (SODAR) measurements at the site. It is shown that coupled simulations reproduce a more realistic shear for heights above 150 m. In terms of estimated energy production, there is not a big difference between coupled and standalone models. Nevertheless, a considerable difference in the horizontal wind speed patterns can be seen between the coupled and non-coupled approaches. The WRF model resolution has only a small influence on the coupled CFD results.
Original languageEnglish
Pages (from-to)273-291
Number of pages19
JournalMeteorologische Zeitschrift
Volume28
Issue number4
Early online date20 Sep 2019
DOIs
Publication statusPublished - 21 Nov 2019

Keywords

  • Mesoscale microscale coupling
  • Wind energy resource assessmente
  • Computational fluid dynamics (CFD)
  • Physical downscaling
  • Boundary conditions

Fingerprint Dive into the research topics of 'Meso-microscale coupling for wind resource assessment using averaged atmospheric stability conditions'. Together they form a unique fingerprint.

  • Cite this