TY - JOUR
T1 - Modelling the permeability evolution of carbonate rocks
AU - van der Land, Cees
AU - Wood, Rachel
AU - Wu, Kejian
AU - van Dijke, Marinus I.J.
AU - Jiang, Zeyun
AU - Corbett, Patrick W.M.
AU - Couples, Gary
N1 - Acknowledgements
We are grateful to Petrobras and BG Group for support of the International Centre for Carbonate Reservoirs. We thank J.A.D. Dickson for valuable discussion.
PY - 2013/12/1
Y1 - 2013/12/1
N2 - Diagenesis is a major control on the distribution of porosity and permeability in carbonate rocks, and therefore impacts fluid flow in the subsurface. While changes in porosity can be directly related to diagenetic petrographic characteristics such as cement distribution and dissolution features, quantifying how these textures relate to attendant changes in permeability is more challenging. Here, we demonstrate for the first time how pore-scale models, representing typical carbonate sediments and their diagenetic histories, can be used to quantify the evolution of petrophysical properties in carbonate rocks. We generate 3D pore architecture models (i.e. the spatial distribution of solid and pores) from 2D binarized images, representing the typical textural changes of carbonate sediments following hypothetical diagenetic pathways. For each 3D rock model, we extract the pore system and convert this into a network representation that allows flow properties to be calculated. The resulting porosity and permeability evolution scenarios display several ‘diagenetic tipping points’ where the decrease in permeability is dramatically larger than expected for the associated decrease in porosity. The effects of diagenesis also alter the capillary entry pressures and relative permeabilities of the synthetic cases, providing trends that can be applied to real rocks. Indeed, values of porosity and absolute permeability derived from these synthetic 3D rock models are within the range of values measured from nature. Such diagenetic pathway models can be used to provide constraints on predicted flow behaviour during burial and/or uplift scenarios using ‘diagenetic back-stripping’ of real carbonate rocks.
AB - Diagenesis is a major control on the distribution of porosity and permeability in carbonate rocks, and therefore impacts fluid flow in the subsurface. While changes in porosity can be directly related to diagenetic petrographic characteristics such as cement distribution and dissolution features, quantifying how these textures relate to attendant changes in permeability is more challenging. Here, we demonstrate for the first time how pore-scale models, representing typical carbonate sediments and their diagenetic histories, can be used to quantify the evolution of petrophysical properties in carbonate rocks. We generate 3D pore architecture models (i.e. the spatial distribution of solid and pores) from 2D binarized images, representing the typical textural changes of carbonate sediments following hypothetical diagenetic pathways. For each 3D rock model, we extract the pore system and convert this into a network representation that allows flow properties to be calculated. The resulting porosity and permeability evolution scenarios display several ‘diagenetic tipping points’ where the decrease in permeability is dramatically larger than expected for the associated decrease in porosity. The effects of diagenesis also alter the capillary entry pressures and relative permeabilities of the synthetic cases, providing trends that can be applied to real rocks. Indeed, values of porosity and absolute permeability derived from these synthetic 3D rock models are within the range of values measured from nature. Such diagenetic pathway models can be used to provide constraints on predicted flow behaviour during burial and/or uplift scenarios using ‘diagenetic back-stripping’ of real carbonate rocks.
KW - Carbonate diagenesis
KW - Diagenetic models
KW - Pore-scale
KW - Network modelling
KW - Relative permeability
U2 - 10.1016/j.marpetgeo.2013.07.006
DO - 10.1016/j.marpetgeo.2013.07.006
M3 - Article
VL - 48
SP - 1
EP - 7
JO - Marine and Petroleum Geology
JF - Marine and Petroleum Geology
SN - 0264-8172
ER -