Spontaneous contractions of isolated rat portal vein under temperature perturbations

Vesna Vuksanovic, Vera Gal, Mirjana M Platisa, Ljiljana Gojković-Bukarica

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

We studied nonlinear dynamics underlying spontaneous rhythmical contractions of isolated rat portal vein. The signals were acquired at four different temperatures important in isolated blood vessels preparations: 4, 22, 37 and 40 degrees C. To characterize the system's nonlinearity, we calculated the largest Lyapunov exponent, sample entropy and scaling exponents. Evidence for nonlinearity was provided by analysis of surrogate data generated from the phase-randomized Fourier transform of the original sequences. Positive values of the largest Lyapunov exponent were obtained for the time series recorded under applied conditions, indicating that the system preserves its chaotic deterministic nature even far from the physiological temperature range. Scaling exponents revealed three distinctive regions with different correlation properties. The calculated measures that characterize the time series obtained at 4 degrees C were significantly different from those derived from data obtained at higher temperatures. System's dynamics becomes more complex or less predictable as temperature approaches physiological value. The computation of the largest Lyapunov exponent, sample entropy and correlation measures gave an insight into the complex dynamics of the isolated blood vessels rhythmicity. We identified different modes of rhythmical contractions of isolated rat portal vein which could improve understanding of possible control mechanisms in vivo.

Original languageEnglish
Pages (from-to)887-894
Number of pages8
JournalMedical & biological engineering & computing
Volume48
Issue number9
DOIs
Publication statusPublished - Sept 2010

Keywords

  • animals
  • entropy
  • muscle, smooth, vascular
  • periodicity
  • portal vein
  • rats
  • rats, inbred WKY
  • temperature
  • vasoconstriction

Fingerprint

Dive into the research topics of 'Spontaneous contractions of isolated rat portal vein under temperature perturbations'. Together they form a unique fingerprint.

Cite this