Structure and evolution of the plant cation diffusion facilitator family of ion transporters

Jeffery L Gustin, Michael J Zanis, David E Salt

Research output: Contribution to journalArticle

75 Citations (Scopus)
3 Downloads (Pure)

Abstract

Background: Members of the cation diffusion facilitator (CDF) family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes. CDF families range in size from nine members in Selaginella moellendorffii to 19 members in Populus trichocarpa. Phylogenetic analysis suggests that the CDF family has expanded within plants, but a definitive plant CDF family phylogeny has not been constructed.

Results: Representative CDF members were annotated from diverse genomes across the Viridiplantae and Rhodophyta lineages and used to identify phylogenetic relationships within the CDF family. Bayesian phylogenetic analysis of CDF amino acid sequence data supports organizing land plant CDF family sequences into 7 groups. The origin of the 7 groups predates the emergence of land plants. Among these, 5 of the 7 groups are likely to have originated at the base of the tree of life, and 2 of 7 groups appear to be derived from a duplication event prior to or coincident with land plant evolution. Within land plants, local expansion continues within select groups, while several groups are strictly maintained as one gene copy per genome.

Conclusions: Defining the CDF gene family phylogeny contributes to our understanding of this family in several ways. First, when embarking upon functional studies of the members, defining primary groups improves the predictive power of functional assignment of orthologous/paralogous genes and aids in hypothesis generation. Second, defining groups will allow a group-specific sequence motif to be generated that will help define future CDF family sequences and aid in functional motif identification, which currently is lacking for this family in plants. Third, the plant-specific expansion resulting in Groups 8 and 9 evolved coincident to the early primary radiation of plants onto land, suggesting these families may have been important for early land colonization.

Original languageEnglish
Article number76
Number of pages13
JournalBMC Evolutionary Biology
Volume11
DOIs
Publication statusPublished - 24 Mar 2011

Keywords

  • multiple sequence alignment
  • zinc-transporter
  • saccharomyces-cerevisiae
  • manganese tolerance
  • metal transporters
  • genome reveals
  • draft sequence
  • land plants
  • PSI-blast
  • arabidopsis

Cite this

Structure and evolution of the plant cation diffusion facilitator family of ion transporters. / Gustin, Jeffery L; Zanis, Michael J; Salt, David E.

In: BMC Evolutionary Biology, Vol. 11, 76, 24.03.2011.

Research output: Contribution to journalArticle

@article{98ba1a2893c447f8814ad03e422c0257,
title = "Structure and evolution of the plant cation diffusion facilitator family of ion transporters",
abstract = "Background: Members of the cation diffusion facilitator (CDF) family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes. CDF families range in size from nine members in Selaginella moellendorffii to 19 members in Populus trichocarpa. Phylogenetic analysis suggests that the CDF family has expanded within plants, but a definitive plant CDF family phylogeny has not been constructed.Results: Representative CDF members were annotated from diverse genomes across the Viridiplantae and Rhodophyta lineages and used to identify phylogenetic relationships within the CDF family. Bayesian phylogenetic analysis of CDF amino acid sequence data supports organizing land plant CDF family sequences into 7 groups. The origin of the 7 groups predates the emergence of land plants. Among these, 5 of the 7 groups are likely to have originated at the base of the tree of life, and 2 of 7 groups appear to be derived from a duplication event prior to or coincident with land plant evolution. Within land plants, local expansion continues within select groups, while several groups are strictly maintained as one gene copy per genome.Conclusions: Defining the CDF gene family phylogeny contributes to our understanding of this family in several ways. First, when embarking upon functional studies of the members, defining primary groups improves the predictive power of functional assignment of orthologous/paralogous genes and aids in hypothesis generation. Second, defining groups will allow a group-specific sequence motif to be generated that will help define future CDF family sequences and aid in functional motif identification, which currently is lacking for this family in plants. Third, the plant-specific expansion resulting in Groups 8 and 9 evolved coincident to the early primary radiation of plants onto land, suggesting these families may have been important for early land colonization.",
keywords = "multiple sequence alignment, zinc-transporter, saccharomyces-cerevisiae, manganese tolerance, metal transporters, genome reveals, draft sequence, land plants, PSI-blast, arabidopsis",
author = "Gustin, {Jeffery L} and Zanis, {Michael J} and Salt, {David E}",
year = "2011",
month = "3",
day = "24",
doi = "10.1186/1471-2148-11-76",
language = "English",
volume = "11",
journal = "BMC Evolutionary Biology",
issn = "1471-2148",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Structure and evolution of the plant cation diffusion facilitator family of ion transporters

AU - Gustin, Jeffery L

AU - Zanis, Michael J

AU - Salt, David E

PY - 2011/3/24

Y1 - 2011/3/24

N2 - Background: Members of the cation diffusion facilitator (CDF) family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes. CDF families range in size from nine members in Selaginella moellendorffii to 19 members in Populus trichocarpa. Phylogenetic analysis suggests that the CDF family has expanded within plants, but a definitive plant CDF family phylogeny has not been constructed.Results: Representative CDF members were annotated from diverse genomes across the Viridiplantae and Rhodophyta lineages and used to identify phylogenetic relationships within the CDF family. Bayesian phylogenetic analysis of CDF amino acid sequence data supports organizing land plant CDF family sequences into 7 groups. The origin of the 7 groups predates the emergence of land plants. Among these, 5 of the 7 groups are likely to have originated at the base of the tree of life, and 2 of 7 groups appear to be derived from a duplication event prior to or coincident with land plant evolution. Within land plants, local expansion continues within select groups, while several groups are strictly maintained as one gene copy per genome.Conclusions: Defining the CDF gene family phylogeny contributes to our understanding of this family in several ways. First, when embarking upon functional studies of the members, defining primary groups improves the predictive power of functional assignment of orthologous/paralogous genes and aids in hypothesis generation. Second, defining groups will allow a group-specific sequence motif to be generated that will help define future CDF family sequences and aid in functional motif identification, which currently is lacking for this family in plants. Third, the plant-specific expansion resulting in Groups 8 and 9 evolved coincident to the early primary radiation of plants onto land, suggesting these families may have been important for early land colonization.

AB - Background: Members of the cation diffusion facilitator (CDF) family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes. CDF families range in size from nine members in Selaginella moellendorffii to 19 members in Populus trichocarpa. Phylogenetic analysis suggests that the CDF family has expanded within plants, but a definitive plant CDF family phylogeny has not been constructed.Results: Representative CDF members were annotated from diverse genomes across the Viridiplantae and Rhodophyta lineages and used to identify phylogenetic relationships within the CDF family. Bayesian phylogenetic analysis of CDF amino acid sequence data supports organizing land plant CDF family sequences into 7 groups. The origin of the 7 groups predates the emergence of land plants. Among these, 5 of the 7 groups are likely to have originated at the base of the tree of life, and 2 of 7 groups appear to be derived from a duplication event prior to or coincident with land plant evolution. Within land plants, local expansion continues within select groups, while several groups are strictly maintained as one gene copy per genome.Conclusions: Defining the CDF gene family phylogeny contributes to our understanding of this family in several ways. First, when embarking upon functional studies of the members, defining primary groups improves the predictive power of functional assignment of orthologous/paralogous genes and aids in hypothesis generation. Second, defining groups will allow a group-specific sequence motif to be generated that will help define future CDF family sequences and aid in functional motif identification, which currently is lacking for this family in plants. Third, the plant-specific expansion resulting in Groups 8 and 9 evolved coincident to the early primary radiation of plants onto land, suggesting these families may have been important for early land colonization.

KW - multiple sequence alignment

KW - zinc-transporter

KW - saccharomyces-cerevisiae

KW - manganese tolerance

KW - metal transporters

KW - genome reveals

KW - draft sequence

KW - land plants

KW - PSI-blast

KW - arabidopsis

U2 - 10.1186/1471-2148-11-76

DO - 10.1186/1471-2148-11-76

M3 - Article

VL - 11

JO - BMC Evolutionary Biology

JF - BMC Evolutionary Biology

SN - 1471-2148

M1 - 76

ER -