The effects of graded levels of calorie restriction: XI. Evaluation of the main hypotheses underpinning the life extension effects of CR using the hepatic transcriptome

Davina Derous, Sharon E Mitchell, Lu Wang, Cara L Green, Yingchun Wang, Luonan Chen, Jing-Dong J Han, Daniel E L Promislow, David Lusseau, Alex Douglas, John R Speakman

Research output: Contribution to journalArticle

14 Citations (Scopus)
22 Downloads (Pure)

Abstract

Calorie restriction (CR) may extend longevity by modulating the mechanisms involved in aging. Different hypotheses have been proposed for its main mode of action. We quantified hepatic transcripts of male C57BL/6 mice exposed to graded levels of CR (0% to 40% CR) for three months, and evaluated the responses relative to these various hypotheses. Of the four main signaling pathways implied to be linked to the impact of CR on lifespan (insulin/insulin like growth factor 1 (IGF-1), nuclear factor-kappa beta (NF-ĸB), mechanistic target of rapamycin (mTOR) and sirtuins (SIRTs)), all the pathways except SIRT were altered in a manner consistent with increased lifespan. However, the expression levels of SIRT4 and SIRT7 were decreased with increasing levels of CR. Changes consistent with altered fuel utilization under CR may reduce reactive oxygen species production, which was paralleled by reduced protection. Downregulated major urinary protein (MUP) transcription suggested reduced reproductive investment. Graded CR had a positive effect on autophagy and xenobiotic metabolism, and was protective with respect to cancer signaling. CR had no significant effect on fibroblast growth factor-21 (FGF21) transcription but affected transcription in the hydrogen sulfide production pathway. Responses to CR were consistent with several different hypotheses, and the benefits of CR on lifespan likely reflect the combined impact on multiple aging related processes.

Original languageEnglish
Pages (from-to)1770-1824
Number of pages55
JournalAging
Volume9
Issue number7
DOIs
Publication statusPublished - 31 Jul 2017

Keywords

  • aging
  • calorie restriction
  • gene expression
  • liver
  • transcriptomics
  • NF-KAPPA-B
  • SHORT-TERM CALORIE
  • RAT-LIVER MITOCHONDRIA
  • GROWTH-FACTOR-I
  • GENETICALLY HETEROGENEOUS MICE
  • OXIDATIVE DNA-DAMAGE
  • AGE-RELATED-CHANGES
  • CANCER STEM-CELLS
  • DIETARY RESTRICTION
  • GENE-EXPRESSION

Fingerprint Dive into the research topics of 'The effects of graded levels of calorie restriction: XI. Evaluation of the main hypotheses underpinning the life extension effects of CR using the hepatic transcriptome'. Together they form a unique fingerprint.

  • Cite this