The salt wedge position in a bar-blocked estuary subject to pulsed inflows

M. J. Coates, Yakun Guo

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

A series of laboratory experiments were carried out to investigate the response of a bar-blocked, saltwedge estuary to the imposition of both steady freshwater inflows and transient inflows that simulate storm events in the catchment area or the regular water releases from upstream reservoirs. The trapped salt water forms a wedge within the estuary, which migrates downstream under the influence of the freshwater inflow. The experiments show that the wedge migration occurs in two stages, namely (i) an initial phase characterized by intense shear-induced mixing at the nose of the wedge, followed by (ii) a relatively quiescent phase with significantly reduced mixing in which the wedge migrates more slowly downstream.

Provided that the transition time t(T) between these two regimes satisfies t(T) > g'h(4)L/q(3)alpha, as was the case for all our experiments and is likely to be the case for most estuaries, then the transition occurs at time t(T) = 1.2(galpha(3)L(6)/g'(3)q(2))(1/6) where g' = gDeltarho/rho(0) is the reduced gravity, g the acceleration due to gravity, Deltarho the density excess of the saline water over the density rho(0) of the freshwater, q the river inflow rate per unit width, and L and a are the length and bottom slope of the estuary, respectively.

A simple model, based on conversion of the kinetic energy of the freshwater inflow into potential energy to mix the salt layer, was developed to predict the displacement x(w) over time t of the saltwedge nose from its initial position. For continuous inflows subject to t < t(T), the model predicts the saltwedge displacement as x(w)/h = 1.1 (t/tau)(1/3), where the normalizing length and time scales are h = (q(2)/g)(1/3) and tau = g'alpha(2)h(4)L/q(3), respectively. For continuous inflows subject to t > t(T), the model predicts the displacement as x(w)/h = 0.45N(1/6)(t/tau)(1/6)/alpha, where N = q(2)/g'h(2)L is a non-dimensional number for the problem. This model shows very good agreement with the experiments. For repeated, pulsed discharges subject to t < t(T), the saltwedge displacement is given by (x(w)/h)(3) - (x(0)/h)(x(w)/h)(2) = 1.3t/tau, where x(0) is the initial displacement following one discharge event but prior to the next event. For pulsed discharges subject to t > t(T), the displacement is given by (x(w)/h)(6) - (x(0)/h)(x(w)/h)(5) = 0.008N(t/tau)/alpha(6). This model shows very good agreement with the experiments for the initial discharge event but does systematically underestimate the wedge position for the subsequent pulses. However, the positional error is less than 15%. (C) 2003 Elsevier Ltd. All rights reserved.

Original languageEnglish
Pages (from-to)187-196
Number of pages9
JournalEstuarine, Coastal and Shelf Science
Volume58
DOIs
Publication statusPublished - 2003

Keywords

  • flushing
  • purging
  • transient discharges
  • pulsed inflows
  • estuaries
  • bar-blocked
  • salt wedge
  • environmental water allocation
  • DENSITY
  • WATER

Cite this

The salt wedge position in a bar-blocked estuary subject to pulsed inflows. / Coates, M. J.; Guo, Yakun.

In: Estuarine, Coastal and Shelf Science, Vol. 58, 2003, p. 187-196.

Research output: Contribution to journalArticle

@article{a9149e6a2f004c39ad6c0c691d2ba9b9,
title = "The salt wedge position in a bar-blocked estuary subject to pulsed inflows",
abstract = "A series of laboratory experiments were carried out to investigate the response of a bar-blocked, saltwedge estuary to the imposition of both steady freshwater inflows and transient inflows that simulate storm events in the catchment area or the regular water releases from upstream reservoirs. The trapped salt water forms a wedge within the estuary, which migrates downstream under the influence of the freshwater inflow. The experiments show that the wedge migration occurs in two stages, namely (i) an initial phase characterized by intense shear-induced mixing at the nose of the wedge, followed by (ii) a relatively quiescent phase with significantly reduced mixing in which the wedge migrates more slowly downstream.Provided that the transition time t(T) between these two regimes satisfies t(T) > g'h(4)L/q(3)alpha, as was the case for all our experiments and is likely to be the case for most estuaries, then the transition occurs at time t(T) = 1.2(galpha(3)L(6)/g'(3)q(2))(1/6) where g' = gDeltarho/rho(0) is the reduced gravity, g the acceleration due to gravity, Deltarho the density excess of the saline water over the density rho(0) of the freshwater, q the river inflow rate per unit width, and L and a are the length and bottom slope of the estuary, respectively.A simple model, based on conversion of the kinetic energy of the freshwater inflow into potential energy to mix the salt layer, was developed to predict the displacement x(w) over time t of the saltwedge nose from its initial position. For continuous inflows subject to t < t(T), the model predicts the saltwedge displacement as x(w)/h = 1.1 (t/tau)(1/3), where the normalizing length and time scales are h = (q(2)/g)(1/3) and tau = g'alpha(2)h(4)L/q(3), respectively. For continuous inflows subject to t > t(T), the model predicts the displacement as x(w)/h = 0.45N(1/6)(t/tau)(1/6)/alpha, where N = q(2)/g'h(2)L is a non-dimensional number for the problem. This model shows very good agreement with the experiments. For repeated, pulsed discharges subject to t < t(T), the saltwedge displacement is given by (x(w)/h)(3) - (x(0)/h)(x(w)/h)(2) = 1.3t/tau, where x(0) is the initial displacement following one discharge event but prior to the next event. For pulsed discharges subject to t > t(T), the displacement is given by (x(w)/h)(6) - (x(0)/h)(x(w)/h)(5) = 0.008N(t/tau)/alpha(6). This model shows very good agreement with the experiments for the initial discharge event but does systematically underestimate the wedge position for the subsequent pulses. However, the positional error is less than 15{\%}. (C) 2003 Elsevier Ltd. All rights reserved.",
keywords = "flushing, purging, transient discharges, pulsed inflows, estuaries, bar-blocked, salt wedge, environmental water allocation, DENSITY, WATER",
author = "Coates, {M. J.} and Yakun Guo",
year = "2003",
doi = "10.1016/S0272-7714(03)00076-3",
language = "English",
volume = "58",
pages = "187--196",
journal = "Estuarine, Coastal and Shelf Science",
issn = "0272-7714",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - The salt wedge position in a bar-blocked estuary subject to pulsed inflows

AU - Coates, M. J.

AU - Guo, Yakun

PY - 2003

Y1 - 2003

N2 - A series of laboratory experiments were carried out to investigate the response of a bar-blocked, saltwedge estuary to the imposition of both steady freshwater inflows and transient inflows that simulate storm events in the catchment area or the regular water releases from upstream reservoirs. The trapped salt water forms a wedge within the estuary, which migrates downstream under the influence of the freshwater inflow. The experiments show that the wedge migration occurs in two stages, namely (i) an initial phase characterized by intense shear-induced mixing at the nose of the wedge, followed by (ii) a relatively quiescent phase with significantly reduced mixing in which the wedge migrates more slowly downstream.Provided that the transition time t(T) between these two regimes satisfies t(T) > g'h(4)L/q(3)alpha, as was the case for all our experiments and is likely to be the case for most estuaries, then the transition occurs at time t(T) = 1.2(galpha(3)L(6)/g'(3)q(2))(1/6) where g' = gDeltarho/rho(0) is the reduced gravity, g the acceleration due to gravity, Deltarho the density excess of the saline water over the density rho(0) of the freshwater, q the river inflow rate per unit width, and L and a are the length and bottom slope of the estuary, respectively.A simple model, based on conversion of the kinetic energy of the freshwater inflow into potential energy to mix the salt layer, was developed to predict the displacement x(w) over time t of the saltwedge nose from its initial position. For continuous inflows subject to t < t(T), the model predicts the saltwedge displacement as x(w)/h = 1.1 (t/tau)(1/3), where the normalizing length and time scales are h = (q(2)/g)(1/3) and tau = g'alpha(2)h(4)L/q(3), respectively. For continuous inflows subject to t > t(T), the model predicts the displacement as x(w)/h = 0.45N(1/6)(t/tau)(1/6)/alpha, where N = q(2)/g'h(2)L is a non-dimensional number for the problem. This model shows very good agreement with the experiments. For repeated, pulsed discharges subject to t < t(T), the saltwedge displacement is given by (x(w)/h)(3) - (x(0)/h)(x(w)/h)(2) = 1.3t/tau, where x(0) is the initial displacement following one discharge event but prior to the next event. For pulsed discharges subject to t > t(T), the displacement is given by (x(w)/h)(6) - (x(0)/h)(x(w)/h)(5) = 0.008N(t/tau)/alpha(6). This model shows very good agreement with the experiments for the initial discharge event but does systematically underestimate the wedge position for the subsequent pulses. However, the positional error is less than 15%. (C) 2003 Elsevier Ltd. All rights reserved.

AB - A series of laboratory experiments were carried out to investigate the response of a bar-blocked, saltwedge estuary to the imposition of both steady freshwater inflows and transient inflows that simulate storm events in the catchment area or the regular water releases from upstream reservoirs. The trapped salt water forms a wedge within the estuary, which migrates downstream under the influence of the freshwater inflow. The experiments show that the wedge migration occurs in two stages, namely (i) an initial phase characterized by intense shear-induced mixing at the nose of the wedge, followed by (ii) a relatively quiescent phase with significantly reduced mixing in which the wedge migrates more slowly downstream.Provided that the transition time t(T) between these two regimes satisfies t(T) > g'h(4)L/q(3)alpha, as was the case for all our experiments and is likely to be the case for most estuaries, then the transition occurs at time t(T) = 1.2(galpha(3)L(6)/g'(3)q(2))(1/6) where g' = gDeltarho/rho(0) is the reduced gravity, g the acceleration due to gravity, Deltarho the density excess of the saline water over the density rho(0) of the freshwater, q the river inflow rate per unit width, and L and a are the length and bottom slope of the estuary, respectively.A simple model, based on conversion of the kinetic energy of the freshwater inflow into potential energy to mix the salt layer, was developed to predict the displacement x(w) over time t of the saltwedge nose from its initial position. For continuous inflows subject to t < t(T), the model predicts the saltwedge displacement as x(w)/h = 1.1 (t/tau)(1/3), where the normalizing length and time scales are h = (q(2)/g)(1/3) and tau = g'alpha(2)h(4)L/q(3), respectively. For continuous inflows subject to t > t(T), the model predicts the displacement as x(w)/h = 0.45N(1/6)(t/tau)(1/6)/alpha, where N = q(2)/g'h(2)L is a non-dimensional number for the problem. This model shows very good agreement with the experiments. For repeated, pulsed discharges subject to t < t(T), the saltwedge displacement is given by (x(w)/h)(3) - (x(0)/h)(x(w)/h)(2) = 1.3t/tau, where x(0) is the initial displacement following one discharge event but prior to the next event. For pulsed discharges subject to t > t(T), the displacement is given by (x(w)/h)(6) - (x(0)/h)(x(w)/h)(5) = 0.008N(t/tau)/alpha(6). This model shows very good agreement with the experiments for the initial discharge event but does systematically underestimate the wedge position for the subsequent pulses. However, the positional error is less than 15%. (C) 2003 Elsevier Ltd. All rights reserved.

KW - flushing

KW - purging

KW - transient discharges

KW - pulsed inflows

KW - estuaries

KW - bar-blocked

KW - salt wedge

KW - environmental water allocation

KW - DENSITY

KW - WATER

U2 - 10.1016/S0272-7714(03)00076-3

DO - 10.1016/S0272-7714(03)00076-3

M3 - Article

VL - 58

SP - 187

EP - 196

JO - Estuarine, Coastal and Shelf Science

JF - Estuarine, Coastal and Shelf Science

SN - 0272-7714

ER -