The Variable Influence of Dispersant on Degradation of Oil Hydrocarbons in Subarctic Deep-Sea Sediments at Low Temperatures (0-5oC)

Robert M W Ferguson (Corresponding Author), Evangelia Gontikaki, James A Anderson, Ursula Witte

Research output: Contribution to journalArticle

15 Citations (Scopus)
7 Downloads (Pure)

Abstract

The microbial degradation of petroleum hydrocarbons at low temperatures was investigated in subarctic deep-sea sediments in the Faroe Shetland Channel (FSC). The effect of the marine oil dispersant, Superdispersant 25 on hydrocarbon degradation was also examined. Sediments collected at 500 and 1000 m depth were spiked with a model oil containing 20 hydrocarbons and incubated at ambient temperature (5 and 0 °C, respectively) with and without marine dispersant. Treatment of sediments with hydrocarbons resulted in the enrichment of Gammaproteobacteria, and specifically the genera Pseudoalteromonas, Pseudomonas, Halomonas, and Cobetia. Hydrocarbon degradation was faster at 5 °C (500 m) with 65–89% of each component degraded after 50 days compared to 0–47% degradation at 0 °C (1000 m), where the aromatic hydrocarbons fluoranthene, anthracene, and Dibenzothiophene showed no degradation. Dispersant significantly increased the rate of degradation at 1000 m, but had no effect at 500 m. There was no statistically significant effect of Superdispersant 25 on the bacterial community structure at either station. These results show that the indigenous bacterial community in the FSC has the capacity to mitigate some of the effects of a potential oil spill, however, the effect of dispersant is ambiguous and further research is needed to understand the implications of its use.
Original languageEnglish
Article number2253
JournalScientific Reports
Volume7
Issue number1
Early online date22 May 2017
DOIs
Publication statusPublished - 1 Dec 2017

Fingerprint

dispersant
deep-sea sediment
hydrocarbon
degradation
oil
fluoranthene
petroleum hydrocarbon
aromatic hydrocarbon
oil spill
sediment
community structure
effect
temperature

Keywords

  • ecosystem services
  • marine biology
  • microbial ecology
  • water microbiology

Cite this

The Variable Influence of Dispersant on Degradation of Oil Hydrocarbons in Subarctic Deep-Sea Sediments at Low Temperatures (0-5oC). / Ferguson, Robert M W (Corresponding Author); Gontikaki, Evangelia; Anderson, James A; Witte, Ursula.

In: Scientific Reports, Vol. 7, No. 1, 2253, 01.12.2017.

Research output: Contribution to journalArticle

@article{e4a1e40e5a3c49618398b9a9176f918e,
title = "The Variable Influence of Dispersant on Degradation of Oil Hydrocarbons in Subarctic Deep-Sea Sediments at Low Temperatures (0-5oC)",
abstract = "The microbial degradation of petroleum hydrocarbons at low temperatures was investigated in subarctic deep-sea sediments in the Faroe Shetland Channel (FSC). The effect of the marine oil dispersant, Superdispersant 25 on hydrocarbon degradation was also examined. Sediments collected at 500 and 1000 m depth were spiked with a model oil containing 20 hydrocarbons and incubated at ambient temperature (5 and 0 °C, respectively) with and without marine dispersant. Treatment of sediments with hydrocarbons resulted in the enrichment of Gammaproteobacteria, and specifically the genera Pseudoalteromonas, Pseudomonas, Halomonas, and Cobetia. Hydrocarbon degradation was faster at 5 °C (500 m) with 65–89{\%} of each component degraded after 50 days compared to 0–47{\%} degradation at 0 °C (1000 m), where the aromatic hydrocarbons fluoranthene, anthracene, and Dibenzothiophene showed no degradation. Dispersant significantly increased the rate of degradation at 1000 m, but had no effect at 500 m. There was no statistically significant effect of Superdispersant 25 on the bacterial community structure at either station. These results show that the indigenous bacterial community in the FSC has the capacity to mitigate some of the effects of a potential oil spill, however, the effect of dispersant is ambiguous and further research is needed to understand the implications of its use.",
keywords = "ecosystem services, marine biology, microbial ecology, water microbiology",
author = "Ferguson, {Robert M W} and Evangelia Gontikaki and Anderson, {James A} and Ursula Witte",
note = "We would like to thank the cruise chief scientist Dr George Slesser, the FRV Scotia crew, Marine Scotland scientific staff, and Ships Captain Iain Campbell who assisted in sampling. We would also like to thank University of Aberdeen students Raymond Awortu and Christina Nicolova who assisted in set-up and sampling of the microcosms, and DNA extractions, respectively and to Dr A.J. McCue for assistance in optimising the conditions employed in GC analysis. The CGEBM (Centre for Genome Enabled Biology and Medicine, University of Aberdeen) is acknowledged for their sequencing services and help in sample preparation for sequencing. This research was funded by the NERC award NE/L00819X/1. E.G. was funded by the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland), and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.",
year = "2017",
month = "12",
day = "1",
doi = "10.1038/s41598-017-02475-9",
language = "English",
volume = "7",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - The Variable Influence of Dispersant on Degradation of Oil Hydrocarbons in Subarctic Deep-Sea Sediments at Low Temperatures (0-5oC)

AU - Ferguson, Robert M W

AU - Gontikaki, Evangelia

AU - Anderson, James A

AU - Witte, Ursula

N1 - We would like to thank the cruise chief scientist Dr George Slesser, the FRV Scotia crew, Marine Scotland scientific staff, and Ships Captain Iain Campbell who assisted in sampling. We would also like to thank University of Aberdeen students Raymond Awortu and Christina Nicolova who assisted in set-up and sampling of the microcosms, and DNA extractions, respectively and to Dr A.J. McCue for assistance in optimising the conditions employed in GC analysis. The CGEBM (Centre for Genome Enabled Biology and Medicine, University of Aberdeen) is acknowledged for their sequencing services and help in sample preparation for sequencing. This research was funded by the NERC award NE/L00819X/1. E.G. was funded by the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland), and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.

PY - 2017/12/1

Y1 - 2017/12/1

N2 - The microbial degradation of petroleum hydrocarbons at low temperatures was investigated in subarctic deep-sea sediments in the Faroe Shetland Channel (FSC). The effect of the marine oil dispersant, Superdispersant 25 on hydrocarbon degradation was also examined. Sediments collected at 500 and 1000 m depth were spiked with a model oil containing 20 hydrocarbons and incubated at ambient temperature (5 and 0 °C, respectively) with and without marine dispersant. Treatment of sediments with hydrocarbons resulted in the enrichment of Gammaproteobacteria, and specifically the genera Pseudoalteromonas, Pseudomonas, Halomonas, and Cobetia. Hydrocarbon degradation was faster at 5 °C (500 m) with 65–89% of each component degraded after 50 days compared to 0–47% degradation at 0 °C (1000 m), where the aromatic hydrocarbons fluoranthene, anthracene, and Dibenzothiophene showed no degradation. Dispersant significantly increased the rate of degradation at 1000 m, but had no effect at 500 m. There was no statistically significant effect of Superdispersant 25 on the bacterial community structure at either station. These results show that the indigenous bacterial community in the FSC has the capacity to mitigate some of the effects of a potential oil spill, however, the effect of dispersant is ambiguous and further research is needed to understand the implications of its use.

AB - The microbial degradation of petroleum hydrocarbons at low temperatures was investigated in subarctic deep-sea sediments in the Faroe Shetland Channel (FSC). The effect of the marine oil dispersant, Superdispersant 25 on hydrocarbon degradation was also examined. Sediments collected at 500 and 1000 m depth were spiked with a model oil containing 20 hydrocarbons and incubated at ambient temperature (5 and 0 °C, respectively) with and without marine dispersant. Treatment of sediments with hydrocarbons resulted in the enrichment of Gammaproteobacteria, and specifically the genera Pseudoalteromonas, Pseudomonas, Halomonas, and Cobetia. Hydrocarbon degradation was faster at 5 °C (500 m) with 65–89% of each component degraded after 50 days compared to 0–47% degradation at 0 °C (1000 m), where the aromatic hydrocarbons fluoranthene, anthracene, and Dibenzothiophene showed no degradation. Dispersant significantly increased the rate of degradation at 1000 m, but had no effect at 500 m. There was no statistically significant effect of Superdispersant 25 on the bacterial community structure at either station. These results show that the indigenous bacterial community in the FSC has the capacity to mitigate some of the effects of a potential oil spill, however, the effect of dispersant is ambiguous and further research is needed to understand the implications of its use.

KW - ecosystem services

KW - marine biology

KW - microbial ecology

KW - water microbiology

U2 - 10.1038/s41598-017-02475-9

DO - 10.1038/s41598-017-02475-9

M3 - Article

VL - 7

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 2253

ER -