Using spatial-stream-network models and long-term data to understand and predict dynamics of faecal contamination in a mixed land-use catchment

Aaron James Neill, Doerthe Tetzlaff, Norval James Colin Strachan, Rupert Lloyd Hough, Lisa Marie Avery, Helen Watson, Chris Soulsby

Research output: Contribution to journalArticle

11 Citations (Scopus)
11 Downloads (Pure)

Abstract

An 11 year dataset of concentrations of E. coli at 10 spatially-distributed sites in a mixed land-use catchment in NE Scotland (52 km2) revealed that concentrations were not clearly associated with flow or season. The lack of a clear flow-concentration relationship may have been due to greater water fluxes from less-contaminated headwaters during high flows diluting downstream concentrations, the importance of persistent point sources of E. coli both anthropogenic and agricultural, and possibly the temporal resolution of the dataset. Point sources and year-round grazing of livestock probably obscured clear seasonality in concentrations. Multiple linear regression models identified potential for contamination by anthropogenic point sources as a significant
predictor of long-term spatial patterns of low, average and high concentrations of E. coli. Neither arable nor pasture land was significant, even when accounting for hydrological connectivity with a topographic-index method. However, this may have reflected coarse-scale land-cover data inadequately representing
“point sources” of agricultural contamination (e.g. direct defecation of livestock into the stream) and temporal changes in availability of E. coli from diffuse sources. Spatial-stream-network models (SSNMs) were applied in a novel context, and had value in making more robust catchment-scale predictions of concentrations of E. coli with estimates of uncertainty, and in enabling identification of potential “hot spots” of faecal contamination. Successfully managing faecal contamination of surface waters is vital for safeguarding public
health. Our finding that concentrations of E. coli could not clearly be associated with flow or season may suggest that management strategies should not necessarily target only high flow events or summer when faecal contamination risk is often assumed to be greatest. Furthermore, we identified SSNMs as valuable tools for identifying possible “hot spots” of contamination which could be targeted for management, and for highlighting areas where additional monitoring could help better constrain predictions relating to faecal contamination.
Original languageEnglish
Pages (from-to)840-851
Number of pages13
JournalScience of the Total Environment
Volume612
Early online date25 Sep 2017
DOIs
Publication statusPublished - 15 Jan 2018

Keywords

  • E. coli
  • Faecal indicator organism
  • Microbial pollution
  • Spatio-temporal dynamics
  • Surface water
  • Water quality

Fingerprint Dive into the research topics of 'Using spatial-stream-network models and long-term data to understand and predict dynamics of faecal contamination in a mixed land-use catchment'. Together they form a unique fingerprint.

Cite this