Varieties of nilpotent elements for simple Lie algebras I: Good primes

David John Benson, B. D. Boe, D. K. Nakano, Nadia Mazza, UGA VIGRE Algebra Group

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Let G be a simple algebraic group over k = C, or F-p where p is good. Set g = Lie G. Given r is an element of N and a faithful (restricted) representation rho: g --> gl(V), one can define a variety of nilpotent elements N-r,(rho)(g) = {x is an element of g: rho(x)(r) = 0}. In this paper we determine this variety when rho is an irreducible representation of minimal dimension or the adjoint representation. (C) 2004 Elsevier Inc. All rights reserved.

Original languageEnglish
Pages (from-to)719-737
Number of pages18
JournalJournal of Algebra
Volume280
Issue number2
DOIs
Publication statusPublished - 2004

Keywords

  • SUPPORT VARIETIES
  • UNIPOTENT ELEMENTS
  • COHOMOLOGY

Cite this

Varieties of nilpotent elements for simple Lie algebras I: Good primes. / Benson, David John; Boe, B. D.; Nakano, D. K.; Mazza, Nadia; UGA VIGRE Algebra Group.

In: Journal of Algebra, Vol. 280, No. 2, 2004, p. 719-737.

Research output: Contribution to journalArticle

Benson, DJ, Boe, BD, Nakano, DK, Mazza, N & UGA VIGRE Algebra Group 2004, 'Varieties of nilpotent elements for simple Lie algebras I: Good primes', Journal of Algebra, vol. 280, no. 2, pp. 719-737. https://doi.org/10.1016/j.jalgebra.2004.05.023
Benson, David John ; Boe, B. D. ; Nakano, D. K. ; Mazza, Nadia ; UGA VIGRE Algebra Group. / Varieties of nilpotent elements for simple Lie algebras I: Good primes. In: Journal of Algebra. 2004 ; Vol. 280, No. 2. pp. 719-737.
@article{95ddfddb5c3947a2acae89801fbcc57e,
title = "Varieties of nilpotent elements for simple Lie algebras I: Good primes",
abstract = "Let G be a simple algebraic group over k = C, or F-p where p is good. Set g = Lie G. Given r is an element of N and a faithful (restricted) representation rho: g --> gl(V), one can define a variety of nilpotent elements N-r,(rho)(g) = {x is an element of g: rho(x)(r) = 0}. In this paper we determine this variety when rho is an irreducible representation of minimal dimension or the adjoint representation. (C) 2004 Elsevier Inc. All rights reserved.",
keywords = "SUPPORT VARIETIES, UNIPOTENT ELEMENTS, COHOMOLOGY",
author = "Benson, {David John} and Boe, {B. D.} and Nakano, {D. K.} and Nadia Mazza and {UGA VIGRE Algebra Group}",
year = "2004",
doi = "10.1016/j.jalgebra.2004.05.023",
language = "English",
volume = "280",
pages = "719--737",
journal = "Journal of Algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - Varieties of nilpotent elements for simple Lie algebras I: Good primes

AU - Benson, David John

AU - Boe, B. D.

AU - Nakano, D. K.

AU - Mazza, Nadia

AU - UGA VIGRE Algebra Group

PY - 2004

Y1 - 2004

N2 - Let G be a simple algebraic group over k = C, or F-p where p is good. Set g = Lie G. Given r is an element of N and a faithful (restricted) representation rho: g --> gl(V), one can define a variety of nilpotent elements N-r,(rho)(g) = {x is an element of g: rho(x)(r) = 0}. In this paper we determine this variety when rho is an irreducible representation of minimal dimension or the adjoint representation. (C) 2004 Elsevier Inc. All rights reserved.

AB - Let G be a simple algebraic group over k = C, or F-p where p is good. Set g = Lie G. Given r is an element of N and a faithful (restricted) representation rho: g --> gl(V), one can define a variety of nilpotent elements N-r,(rho)(g) = {x is an element of g: rho(x)(r) = 0}. In this paper we determine this variety when rho is an irreducible representation of minimal dimension or the adjoint representation. (C) 2004 Elsevier Inc. All rights reserved.

KW - SUPPORT VARIETIES

KW - UNIPOTENT ELEMENTS

KW - COHOMOLOGY

U2 - 10.1016/j.jalgebra.2004.05.023

DO - 10.1016/j.jalgebra.2004.05.023

M3 - Article

VL - 280

SP - 719

EP - 737

JO - Journal of Algebra

JF - Journal of Algebra

SN - 0021-8693

IS - 2

ER -