Abstract
We show that various flavors of Witt vectors are functorial with respect to multiplicative polynomial laws of finite degree. We then deduce that the p-typical Witt vectors are functorial in multiplicative polynomial maps of degree at most p−1. This extra functoriality allows us to extend the p-typical Witt vectors functor from commutative rings to Z/2-Tambara functors, for odd primes p. We use these Witt vectors for Tambara functors to describe the components of the dihedral fixed-points of the real topological Hochschild homology spectrum at odd primes.
Original language | English |
---|---|
Publisher | ArXiv |
Pages | 1-57 |
Number of pages | 57 |
Publication status | Submitted - 16 Oct 2020 |