Zoospore development in the oomycetes

Claire Walker, Pieter van West

Research output: Contribution to journalArticle

64 Citations (Scopus)

Abstract

Oomycetes cause destructive diseases on both animals and plants. The epidemic spread of oomycete diseases is primarily based on rapid dispersal from host to host by free swimming zoospores. These single-nucleated spores are formed in sporangia and are only released in aqueous environments. Oomycetes are classified in the Kingdom of the Stramenopiles or Chromista, which is comprised of several organisms, including the golden brown algae. The unique shared attribute found in most Stramenopiles is the morphology of the zoospores and especially the structure of their two flagella. They have one tinsel flagellum, and one whiplash flagellum. Only the tinsel flagellum has distinctive flagellar hairs. Zoospore formation can occur within minutes and it is considered one of the fastest developmental processes in any biological system. Once released from the sporangium they are able to exhibit chemotactic responses, electrotaxis, and autotaxis or autoaggregation to target new hosts for infection. Here we discuss the latest discoveries in the development and biology of the oomycete zoospore.
Original languageEnglish
Pages (from-to)10-18
Number of pages9
JournalFungal Biology Reviews
Volume21
Issue number1
DOIs
Publication statusPublished - Feb 2007

Fingerprint

Oomycetes
Flagella
Stramenopiles
Sporangia
Chrysophyta
Spores
Infection

Cite this

Zoospore development in the oomycetes. / Walker, Claire; van West, Pieter.

In: Fungal Biology Reviews, Vol. 21, No. 1, 02.2007, p. 10-18.

Research output: Contribution to journalArticle

Walker, Claire ; van West, Pieter. / Zoospore development in the oomycetes. In: Fungal Biology Reviews. 2007 ; Vol. 21, No. 1. pp. 10-18.
@article{9aafb3a9129745529d455e8f198ea14e,
title = "Zoospore development in the oomycetes",
abstract = "Oomycetes cause destructive diseases on both animals and plants. The epidemic spread of oomycete diseases is primarily based on rapid dispersal from host to host by free swimming zoospores. These single-nucleated spores are formed in sporangia and are only released in aqueous environments. Oomycetes are classified in the Kingdom of the Stramenopiles or Chromista, which is comprised of several organisms, including the golden brown algae. The unique shared attribute found in most Stramenopiles is the morphology of the zoospores and especially the structure of their two flagella. They have one tinsel flagellum, and one whiplash flagellum. Only the tinsel flagellum has distinctive flagellar hairs. Zoospore formation can occur within minutes and it is considered one of the fastest developmental processes in any biological system. Once released from the sporangium they are able to exhibit chemotactic responses, electrotaxis, and autotaxis or autoaggregation to target new hosts for infection. Here we discuss the latest discoveries in the development and biology of the oomycete zoospore.",
author = "Claire Walker and {van West}, Pieter",
note = "A paid open access option is available for this journal. Voluntary deposit by author of pre-print allowed on Institutions open scholarly website and pre-print servers Voluntary deposit by author of authors post-print allowed on institutions open scholarly website including Institutional Repository Deposit due to Funding Body, Institutional and Governmental mandate only allowed where separate agreement between repository and publisher exists Set statement to accompany deposit Published source must be acknowledged Must link to journal home page or articles' DOI Publisher's version/PDF cannot be used Articles in some journals can be made Open Access on payment of additional charge NIH Authors articles will be submitted to PubMed Central after 12 months Authors who are required to deposit in subject-based repositories may also use Sponsorship Option",
year = "2007",
month = "2",
doi = "10.1016/j.fbr.2007.02.001",
language = "English",
volume = "21",
pages = "10--18",
journal = "Fungal Biology Reviews",
issn = "1749-4613",
publisher = "Elsevier BV",
number = "1",

}

TY - JOUR

T1 - Zoospore development in the oomycetes

AU - Walker, Claire

AU - van West, Pieter

N1 - A paid open access option is available for this journal. Voluntary deposit by author of pre-print allowed on Institutions open scholarly website and pre-print servers Voluntary deposit by author of authors post-print allowed on institutions open scholarly website including Institutional Repository Deposit due to Funding Body, Institutional and Governmental mandate only allowed where separate agreement between repository and publisher exists Set statement to accompany deposit Published source must be acknowledged Must link to journal home page or articles' DOI Publisher's version/PDF cannot be used Articles in some journals can be made Open Access on payment of additional charge NIH Authors articles will be submitted to PubMed Central after 12 months Authors who are required to deposit in subject-based repositories may also use Sponsorship Option

PY - 2007/2

Y1 - 2007/2

N2 - Oomycetes cause destructive diseases on both animals and plants. The epidemic spread of oomycete diseases is primarily based on rapid dispersal from host to host by free swimming zoospores. These single-nucleated spores are formed in sporangia and are only released in aqueous environments. Oomycetes are classified in the Kingdom of the Stramenopiles or Chromista, which is comprised of several organisms, including the golden brown algae. The unique shared attribute found in most Stramenopiles is the morphology of the zoospores and especially the structure of their two flagella. They have one tinsel flagellum, and one whiplash flagellum. Only the tinsel flagellum has distinctive flagellar hairs. Zoospore formation can occur within minutes and it is considered one of the fastest developmental processes in any biological system. Once released from the sporangium they are able to exhibit chemotactic responses, electrotaxis, and autotaxis or autoaggregation to target new hosts for infection. Here we discuss the latest discoveries in the development and biology of the oomycete zoospore.

AB - Oomycetes cause destructive diseases on both animals and plants. The epidemic spread of oomycete diseases is primarily based on rapid dispersal from host to host by free swimming zoospores. These single-nucleated spores are formed in sporangia and are only released in aqueous environments. Oomycetes are classified in the Kingdom of the Stramenopiles or Chromista, which is comprised of several organisms, including the golden brown algae. The unique shared attribute found in most Stramenopiles is the morphology of the zoospores and especially the structure of their two flagella. They have one tinsel flagellum, and one whiplash flagellum. Only the tinsel flagellum has distinctive flagellar hairs. Zoospore formation can occur within minutes and it is considered one of the fastest developmental processes in any biological system. Once released from the sporangium they are able to exhibit chemotactic responses, electrotaxis, and autotaxis or autoaggregation to target new hosts for infection. Here we discuss the latest discoveries in the development and biology of the oomycete zoospore.

U2 - 10.1016/j.fbr.2007.02.001

DO - 10.1016/j.fbr.2007.02.001

M3 - Article

VL - 21

SP - 10

EP - 18

JO - Fungal Biology Reviews

JF - Fungal Biology Reviews

SN - 1749-4613

IS - 1

ER -